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Abstract. We consider the problem of finding the ground state of a model type-II
superconductor on the two-dimensional surface of a sphere, penetrated byN vortices. Numerical
work shows the ground states to consist of a triangular network of the vortices with twelve
five-coordinated centres. Values ofN are found with particularly low-energy ground states,
due to structures of high symmetry. The large-N limit is treated within elasticity theory to
compare with the triangular vortex lattice that forms the ground state on an infinite flat plane.
Together with numerical work this demonstrates that the thermodynamic limitN → ∞ of the
spherical system remains different from the flat plane due to the presence of twelve disclination
defects.

1. Introduction

The problem of constructing an optimum lattice-like structure over a curved surface has
become an area of interest in diverse contexts within condensed matter physics. Some
examples are in work on flexible tethered membranes, Fullerene molecules, the Thomson
problem of electrons on a spherical surface and in models of two-dimensional systems
using a spherical geometry to study both the quantum hall effect (QHE) and thin-film
superconductors.

The well known Fullerene molecules demonstrate how a low-energy structure can be
formed by folding a hexagonal lattice of carbon atoms (as is found in graphite) onto a
closed surface, as long as twelve five-membered rings (pentagons) are present—a simple
consequence of Euler’s theorem. These pentagons are essentially disclination defects in the
hexagonal lattice. The first Fullerene molecule discovered was C60 in which each of the
sixty atoms holds an identical symmetry position within the structure of the molecule, so
that the atoms reside on the surface of a sphere [1]. This is a special case and as the number
of carbon atoms increases in these molecules the shape may distort from a sphere to reduce
the strain from the ideal hexagonal lattice over large areas. The interaction between the
energy cost of bending the surface of the molecule and the strain energy within the molecule
due to the disclination defects is of central importance in the question of the stability of
different structures [2–4].

The same considerations are important in the behaviour of membranes with internal
crystalline order and the ability to buckle out of the two-dimensional plane. A disclination
defect may lower its energy by buckling. If this reduces the total energy of the defect such
that it diverges at most logarithmically with the system size, then this raises the possibility
of a buckling transition as defects begin to proliferate at some finite temperature [5].
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Alternatively, if we consider a closed membrane, such as a vesicle made from surfactant
bilayers, then the interaction of the internal orientational order with the physical curvature
may alter the shape [6], or even the topology [7] of the membrane.

Some important and well studied models involve these problems but with the curvature
of the system fixed. One instance is Thomson’s problem of trying to find the lowest energy
configuration forN electrons that are constrained to lie on the surface of a sphere. Although
the problem was first proposed in the rather dated context of classical models of the atom [8],
it has been extensively studied recently. This is partly because of the general relevance to
any physical system of this geometry, but also for its interest as an unsolved problem,
providing a testing ground for various numerical optimization methods [9–13].

A different model where a two-dimensional system is restricted to a spherical surface
has been studied both in the context of theQHE and in numerical studies on thin-film
superconductors. In this model, a magnetic field perpendicular to the surface is imposed
by placing a Dirac monopole at the centre of the sphere. The possible electronic states
on the surface of the sphere split into Landau levels under the influence of the magnetic
field, in analogy with the problem on a flat plane. The reason the model was put on a
sphere by Haldane was to allow ‘the construction of homogeneous states’ with only a finite
number of electrons [14]. Recent Monte Carlo simulations of2D superconductors have
been performed with a similar model to Haldane’s with a superconducting wavefunction in
the lowest Landau level on the sphere [15–17]. This wavefunction containsN zeros that
correspond to vortices in the supercurrent, whereN depends on the quantized strength of
the monopole. The reason for using this model is again to enable translational invariance
which is not possible in a finite system on a flat plane.

The Monte Carlo simulations on a sphere have led us to consider in detail the ground
states of this model. While the problem of finding the ground state of an infinite type-II
superconductor penetrated by vortices was long ago solved and found to be the triangular
vortex lattice [18], such a lattice cannot form on a sphere without the presence of twelve
vortices with only five nearest neighbours. These twelve vortices are the centres of
disclination defects. By considering the strains from the perfect triangular lattice, caused
by the disclination defects, within elasticity theory, we have approximated the ground-state
energy in the large-N limit using similar methods used in theoretical work on membranes
and Fullerene molecules. We have also found numerically the ground states with finiteN ,
using symmetry considerations to reach large system sizes. We find values ofN that give
particularly low energies and this is explained. By extrapolating our numerical results to
largeN we find a finite energy cost per vortex on the sphere compared to the infinite plane
ground state that is consistent with our results from elasticity theory.

2. Formulation

Our model thin-film superconductor consists of a spherical shell of superconducting material,
thicknessd, radiusR and a monopole at the centre of the sphere that produces an integer
multiple of flux quanta through the spherical surface. We ignore spatial fluctuations in the
magnetic flux density,B, at the surface; the effective penetration depth for supercurrents in
thin films becomes arbitrarily large asd is reduced. We choose a cylindrically symmetric
gauge consistent with this field withA ≡ (Ar, Aθ , Aφ) = (0, 0, BR tanθ/2). We measure
lengths in the unitslm = (80/2πB)1/2 which if there areN quanta of flux gives
R = (N/2)1/2. If we may describe the properties of the superconductor by a complex order
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parameterψ(θ, φ), then the Ginzburg–Landau free-energy Hamiltonian will be given by

H[ψ ] =
∫

d3r

[
α(T )|ψ |2 + β

2
|ψ |4 + 1

2m
ψ∗D2ψ

]
(1)

whereD2 = D∗ ·D andD = −ih̄∇−2eA. We diagonalize the operatorD2 by expanding
ψ in a basis of eigenfunctions ofD2 which form degenerate Landau levels. The degenerate
set with the lowest eigenvalue may be completed by the orthonormal functions [19]

ψm(θ, φ) = hmeimφ sinm(θ/2) cosN−m(θ/2) (2)

with m = 0, N and hm = [(N + 1)!/4πR2m!(N −m)!]
1/2

. This is the lowest Landau
level (LLL ) and over a large range of fields and temperatures it is a good approximation to
restrictψ to the LLL , ψ(θ, φ) = Q

∑
vmψm(θ, φ). We setQ = (80kBT/βdB)1/4. With

this restriction we can write the Hamiltonian in terms of the basis coefficients, which for
αT < 0 is given by

H (αT , {um}) ≡ kBT α
2
TF ({um})

= kBT α
2
T

[
−

N∑
m=0

umu
∗
m +

N∑
p,q,r,s=0

wp+q,q,rupuqu∗
r u

∗
s δp+q,r+s

]
(3)

where wp+q,q,r is given in [15], αT = dQ2 (α(T )+ eBh̄/m) /kBT is the reduced
temperature variable and we have scaled the coefficients asvm = um|αT |1/2. The quartic
term in equation (3) can be rewritten to give [16]

F ({um}) =
[
−

N∑
m=0

|um|2 + 1

2N

2N∑
p=0

|Up|2
]

(4)

whereUp = 2πN
∑N

q=0B
1/2(2N − p + 1, p + 1)hqhp−q2(p − q)2(N + q − p)uqup−q ,

B(x, y) = 0(x)0(y)/0(x+y) is the beta function and2(q) is the Heaviside step function.
The vortices in this system correspond to the zeros inψ(θ, φ). The phase of the order

parameter changes by 2π when a path is followed that encircles any zero once. This
becomes clear if we make the projection

ζ = tan(θ/2)eiφ . (5)

This gives the formψ = cosN(θ/2)
∑N

m=0 amζ
m ≡ cosN(θ/2)fN(ζ ). ThereforefN(ζ ) is a

holomorphic function ofζ with N simple zeros in the complex-ζ plane. It can always be
written in the alternative product formfN(ζ ) = C

∏N
i=1(ζ − ζi). C is an overall complex

amplitude and{ζi} are the vortex positions in the projection of equation (5). The function
ψ(θ, φ) is equally well described by the set{um} or the set{C, ζi}. There is no simple
relation between the two, although numerical routines may be used to find the positions of
the zeros for a given set of basis coefficients. Despite this lack of a simple relation from the
basis coefficients to coordinates on the sphere, there are still some spatial transformations
one can make using the{um} formalism. For instance, rotation about thez-axis by an angle
γ may be performed by the transformationum → um eimγ . Reflection in thex–z plane
results inum → u∗

m. Rotation byπ about thex-axis occurs under the changeum → uN−m.
We are interested in the ground states ofF ({um}). We write the Hamiltonian as

F = −1+ βA

2N
12 (6)

where1 = ∑
umu

∗
m and βA = 〈|ψ0|4〉/〈|ψ0|2〉2 = ∑ |Up|2/12 is the Abrikosov factor.

This is minimized by1 = −N/βA to give Fmin ≡ −NE0 = −N/2βA, so minimizingF
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is equivalent to minimizingβA({um}). The correct1 is then given by a scale factor on the
basis coefficients that does not alterβA.

The ground state of theLLL vortex system on an infinite plane is well known to be the
triangular lattice [18] which hasβA = βA,0 ' 1.1596. With periodic boundary conditions,
this is also the ground state on the finite systems used in other simulations [20–22]. However,
a perfect triangular lattice cannot form on a spherical surface. The closest configuration
the vortices can make to an ideal lattice must contain twelve ‘disclinations’, i.e. twelve
vortices that only have five nearest neighbours. In section 4 we give our results for directly
minimizing F ({um}) using a simple numerical method, but first we describe in section 3
calculations using elasticity theory to give the finite energy cost that the spherical system
will have asN → ∞ due to the twelve disclinations.

3. Elasticity theory

For a lattice in a two-dimensional plane, the elastic energy cost of deformations from the
perfect ground-state lattice is given in the harmonic approximation by

Fel = 1
2

∫
d2r

(
2µu2

ij + λu2
kk

)
(7)

where uij (r) = 1
2(∂iuj (r) + ∂jui(r)) is the elastic strain matrix. The displacement

u(r) = (ux, uy) represents the deformation of the lattice from the pointr to the point
r +u. The elastic constantsµ andλ are related to the shear and bulk moduli bycshear= µ

andcbulk = µ+ λ. For theLLL ground state the bulk modulus is infinite; the vortex system
is incompressible soukk = 0. The shear modulus is given by [23]

µ = 0.48× 1

2
µ0H

2
c2
(1 −H/Hc2)

2d

2κ2β2
A

. (8)

The GL parameterκ is the ratio of magnetic and superconducting correlation lengths, which
diverges when we neglect the magnetic screening of supercurrents. In our approximation
we can write the shear modulus asµ = 0.48kBT α

2
T /4πβ

2
A l

2
m = 0.0659E0/l

2
m (this is written

in terms of the energy per vortex of the ideal triangular lattice on the infinite flat plane,
−E0).

From the elastic energy in equation (7) Hooke’s law may be derived by minimizingFel

to give ∂iσij = 0 for the stress tensor

σij = 2µuij + λukkδij . (9)

The zero-divergence condition allows the reformulation of the problem in terms of the Airy
stress function [24]σij = εikεjl∂k∂lχ . (This is analogous to the vector potential that ensures
zero divergence of magnetic fields.)

In the presence of topological defects, such as the disclinations we are considering, the
displacement fieldu(r) is multi-valued. A disclination is defined by the change in bond
angleϑ = 1

2εij ∂iuj as a closed loop is followed. Encircling a five-fold disclination in
a triangular lattice will increaseϑ by 2π/6. This results in the non-commutativity of the
derivatives ofϑ at the centre of the disclination. Writing the strain field in terms of the Airy
stress function results in the biharmonic equation that contains all of2D elasticity theory [5]:

1

K0
∇4χ = s(r) . (10)



Ground states of a model superconductor on a sphere 2503

The density of disclinations iss(r) = ∑
α sαδ(r − rα) whereα labels each defect and

sα = 2π/6 for a five-fold disclination. In equation (10),K0 is the 2D Young’s modulus,
which in theLLL is

K0 = 4µ(µ+ λ)

2µ+ λ
= 4µ = 0.264E0/l

2
m . (11)

Of course, our problem is not on a flat plane but on a sphere, so we must take into
account the bending of the system out of the plane. In the large-N limit the surface will
be flat locally compared to lattice spacings. Over a small region, we may approximate
the sphere as a plane with some small perpendicular deflection,f (r). For our purposes
we neglect the bending energy which will tend to a constant—independent on the system
size—when integrated over the whole sphere. However, we will need to write the strain
matrix asuij = 1

2(∂iuj + ∂jui + ∂if ∂jf ). This alters the biharmonic equation by adding an
extra term, det(∂i∂jf ) ' K, the Gaussian curvature to equation (10):

1

K0
∇4χ = s(r)−K(r) . (12)

For a sphere the curvature is constant,K = 1/R2. We write χ as the superposition of
twelve contributions corresponding to each disclination,χ(r) = ∑12

α=1 χα(r). The solution
to (12) is found in the appendix. The elastic energy from equation (7) can be written in
terms of the Airy stress function as in equation (A6). We have calculated the energy cost
for these twelve disclinations for different configurations. For any configuration the total
energy scales with the surface area of the sphere, so there is a finite energy cost per vortex
in the limit N → ∞. The minimum energy is found with the disclinations at the corners
of an icosahedron. In this case we find an energy cost per vortex of

δEel = 0.0236K0R
2/N = 0.0031E0 . (13)

In section 4 we will compareδEel with the energyδE obtained by direct minimization of
F({um}) for finite N .

4. Numerical results

We have used a simple quasi-Newton algorithm to find configurations{un} that minimize the
Abrikosov ratioβA({un}); this is equivalent to finding the minimum energy of the system.
Clearly there are some transformations of{un} under whichβA is invariant. The energy of
the system remains unchanged after a global phase change in the order parameter, or after a
rotation of the whole system about some axis. These freedoms can be fixed by restrictions
on the coefficients [15]. Our results up toN = 200 are shown in figure 1. The presence
of ‘magic numbers’, for which the ground state has a lower energy than nearby values, is
clearly seen atN = 12, 32, 72, 132 and 192. To some extent we can explain the magic
numbers from the expected symmetry of the most stable ground states.

By finding the zeros of the ground states, we can look at the vortex configurations.
As might be expected they make up a triangular network, but with twelve five-coordinated
centres. The magic number states display icosahedral symmetry with the disclinations
corresponding to the corners of the icosahedron, as in figure 2. In fact, the structures appear
to be projections onto the sphere of icosadeltahedra, which are polyhedra with identical
equilateral triangular faces and icosahedral symmetry [25]. These may be constructed by
considering the number of triangular lattice vectors between neighbouring five-fold centres,
labelled by the indices(h, k).
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Figure 1. The minimum values of the Abrikosov ratioβA for different system sizes. Note the
low values forN = 12, 32, 72, 132 and 192. The inset shows the values for largeN plotted
againstN−1/2 with a fit to extrapolate to theN → ∞ limit. The value for an infinite flat plane,
βA,0, is shown for comparison.

Figure 2. The numerically found ground states for three magic number cases: (a) N = 32, (b)
N = 72, (c) N = 132. Only one hemisphere is shown; the full circles represent the zeros of the
order parameter and the five-fold centres are represented by larger full circles, which in each
case form the corners of an icosahedron.

A simple geometrical argument shows that this divides each face of the icosahedron
into T triangular faces with T = h2 + hk + k2, so T may be equal to
1, 3, 4, 7, 9, 12, 13, 16, 19, . . . . This gives a total of 20T faces and 10T + 2 vertices to the
icosadeltahedra. The magic numbers we find satisfy these conditions, the only remaining
question being why some possible values ofN are not so low in energy, e.g.N = 42
or 122.

Notice that the structures forN = 72 and 132 possess a chirality. In fact, this will
always be the case forh 6= k (as long as neither is zero). This may be a factor in deciding
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the lowest energy structures as the complex conjugation of the coefficients is equivalent to a
reflection. If a ground state has no chirality then any reflection of the state will be equivalent
to a rotation. This would require that we could write the ground state with all coefficients
having the same phase. It is unlikely that this combination would be effective in minimizing
the complex interactions in the quartic term of the Hamiltonian especially as the system
size increases. Therefore the chirality allows a greater variety of phase differences between
the coefficients. Such subtleties may explain why the ground states for some non-chiral
icosahedral numbers are not particularly stable, as withN = 42, 122.

Remarkably, the same structures that are found when we minimize our vortex system
for some magic numbers are seen in nature in the form of the shells of certain viruses [26].
In particular, the structure shown in figure 2(c) for N = 132 is also observed in double and
single-shelled simian rotaviruses, in a left-handed configuration [27]. That these similarities
exist in such different systems suggests that some general principle exists for the criterion
of the most stable structure. It is possibly related to a mathematical problem that also
generates these structures. This is the ‘covering’ problem: how mayN equal overlapping
circles (without gaps) cover a sphere so that the diameter of the circles is minimized [28]?
The centres of these circles correspond to the vortices in our system. The alternative problem
of maximizing the diameter of the circles apparently gives different solutions.

The details of the magic number states become less important asN becomes large, the
limit treated in section 3 within elasticity theory. AsN increases the numerical minimization
becomes less trivial as there is an increasing overlap between the basis states resulting in
more complex phase interference (see [29] where numerical minimization on a plane in
cylindrical coordinates resulted in rather high values ofβA). Another possibly related
problem is the growth in the number of metastable states with energies only slightly above
the ground state. The numerical work on Thomson’s problem has found that the number of
metastable states grows exponentially with the system size [10]. We may use our knowledge
of the symmetry of the most stable configurations to reduce the number of free variables
by an order of magnitude. We assume the icosahedral properties of the ground state, and
choose a five-coordinated vortex atθ = 0. The five-fold symmetry about thez-axis is
imposed by settingun = 0 for n 6= (5m + 1) wherem is any integer. The icosahedron
also has five two-fold axes of symmetry at right angles to each five-fold axis. This two-
fold rotational symmetry will arise if we setun = uN−n. We have performed the same
minimization routine using these constraints forN = 10m+ 2 up toN = 652.

Our results for largeN are shown in the inset to figure 1. The data fit well to the form
βA = A+BN−1/2 with A ' 1.1624= βA,0(1+ 0.0024) andB ' 0.0648. AsN → ∞, βA

does not seem to converge to the infinite plane valueβA,0 (contrary to the conclusions of
O’Neill and Moore from the minimizations of small system sizes [15]). This extrapolation
implies a finite energy cost per vortex on the sphere in the large-N limit of

δE = 0.0024E0 . (14)

The difference between this and the result of equation (13) from elasticity theory may be
explained by the inadequacy of the harmonic approximation in this calculation. As there
are large strains associated with the disclination defects, nonlinear effects will be important
in determining the total energy cost. In their calculation of disclination defects on flat
membranes Seung and Nelson [5] found the same mismatch between elasticity theory and
numerical results, with elasticity overestimating the energy cost by a similar proportion.

Within the approximations of section 3 the correction for finiteN is not predicted.
Numerically the energy cost per vortex falls as 1/R at largeN which implies a total
contribution that grows proportionally to the radius.
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It must be stressed that the results of this section required no great numerical effort. More
sophisticated optimization methods (e.g. simulated annealing [9] and its generalizations [13])
may give greater confidence in whether or not the absolute minima have been found. More
extensive work would also give results for largerN . However, our use of symmetry has
allowed us to do a great deal with just a simple routine.

5. Conclusions

The original motivation of this work was for the use of the numerical ground states in
Monte Carlo simulations [17]. We also wanted to investigate the differences between these
ground states and the ground states on a flat plane, for which other groups have performed
simulations obtaining different results. The work in this paper shows that the vortex ground
states on the sphere do not approach the ground state of the infinite flat plane asN → ∞.
The presence of the twelve disclinations remains important however large the sphere.

This work may also be of interest in wider contexts: first, in its relation to other
optimization problems of points on a sphere. Our particular system allows a use of
symmetry that may not be so straightforward with position variables. This enables us to
find approximate ground states at largeN with quite unsophisticated numerical techniques.
Our elasticity calculation may be relevant to the large-N limit of Thomson’s problem, using
properties of the Wigner lattice on a2D infinite plane. This limit has been considered before,
and projection of the Wigner lattice onto a spherical surface was used to estimate the extra
energy on the sphere [11]. However, no consideration was taken of the required disclination
defects. This paper also provides a numerical test of the accuracy of elasticity theory for
curved membranes and disclination defects where the approximation of small deviations
from the ideal lattice breaks down. Finally, the fact that the structures we see in the magic
number ground states are the same structures seen in such a different field as virology
suggests that these fascinating shapes are the result of some general optimization criteria.
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Appendix. Disclination on a sphere

In this appendix we derive the contributions from each of the twelve disclinations to the
Airy stress functionχ(r) = ∑12

α=1 χα(r) and describe how this leads to the elastic energy
cost of these disclinations. From equation (12) withK = 1/R2 ands = 1

3π
∑12

α=1 δ
2(r−rα)

we have

1

K0
∇4χα = π

3
δ2(r − rα)− 1

12R2
(A1)

wherer −rα = (θ ′(α), φ′(α)), andθ ′(α) andφ′(α) are the polar and azimuthal angles with
respect to the axis through the disclination. Using the symmetry about this axis, this may
be integrated to give

∇2χα = K0

12
{ln[1 − cosθ ′(α)] + A} (A2)
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with A a constant. Forχα to be well defined the integral of∇2χα over the whole sphere
must be zero, which meansA = 1 − ln 2. Integrating again leads to

∂χα

∂θ ′(α)
= −K0R

2

12

[1 − cosθ ′(α)]
sinθ ′(α)

ln
1

2
[1 − cosθ ′(α)] (A3)

χα = K0R
2

12

{
− ln 2 ln[1 + cosθ ′(α)] +

∫ 1−cosθ ′(α)

0

ln x

2 − x
dx

}
. (A4)

The integral in equation (A4) cannot be written as a finite number of elementary
functions [30]. In deriving equations (A3) and (A4) integration constants may be chosen
arbitrarily as this will not change the resulting strains (which depend on the second
derivatives ofχ ). From equation (7) the elastic energy of the disclinations can be written as

Fel = 1

2

∫
d2r

[
1 + σ

K0
(∂i∂jχ)

2 − σ

K0
(∇2χ)2

]
(A5)

= 1

2

∫
d2r

[
1

K0
(∇2χ)2 − 1 + σ

K0
εikεjl∂k∂l

(
∂iχ∂jχ

)]
(A6)

with the 2D Poisson ratioσ = λ/(2µ + λ) equal to unity in theLLL approximation. The
second term in equation (A6) only gives contributions on boundaries, and so is zero on the
sphere. Therefore from equation (A2) we can find the energies of different configurations
of the disclinations on the sphere.
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